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Abstract 

Industrial hemp (Cannabis sativa) is susceptible to nutrient deficiency of nitrogen, phosphorus, 
and potassium (NPK), leading to a decrease in yield and subsequently profits for growers. 
Therefore, in this study, we focused on monitoring the NPK fertilizing rate of industrial hemp 
plants in greenhouse conditions. Benchtop hyperspectral imaging was utilized to detect the NPK 
deficiency in three different cultivars (Trilogene Alpha, Atlas Wilhelmina, and UMN 5-4). A 
Resonon Pika L was used to scan the hemp plant canopy and obtain hyperspectral images in the 
greenhouse. Image scanning began 30 days after planting (DAP), and four days after nutrient stress 
application. Two additional rounds of image collection were carried out at four-day intervals. Four 
classifiers, multi-layer perceptron (MLP), random forest classifier (RFC), Stepwise discriminant 
analysis (STDA), and quadratics discriminant analysis (QDA), were used to classify stressed 
plants from control plants (fully fertilized). All varieties quickly responded to NPK deficiency and 
were recorded with high classification rates for all classes. Trilogene Alpha had the highest 
classification accuracy among the three hemp varieties using MLP and STDA - 94% and 97%, 
respectively, in DAP 30 and 98% and 97%, respectively in DAP 34. Feature selection was 
performed to select the most effective wavebands. The result of this study will lead to the 
development of an inexpensive sensor to detect hemp nutrient deficiencies before noticeable 
morphological changes in the greenhouse. 
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1. Introduction  

The main challenge in precision agriculture is detecting stress factors correctly before damage 
increases in the entire crop (Cruz et al., 2017; Ana I. de Castro et al., 2015; Luvisi et al., 2016; 
Roujean & Breon, 1995). Stress factors such as insects, nutrient deficiencies, pathogens, drought, 
and weed presence can decrease yield quality and quantity without proper management (Mahlein 
et al., 2010). Nutrient deficiency and plant disease economic threats could have disastrous 
consequences for host plants encountering novel pathogens. Plant disease diagnostic practice 
consists of visual inspection of suspect plants, collection of symptomatic leaves, and laboratory 
analyses, which are time-consuming, labor-intensive, expensive, and require experienced 
personnel. Therefore, a rapid technique to identify early-stage nutrient deficiency and the ability 
to discriminate between it and other diseases and abiotic stressors is highly desirable (Sankaran & 
Ehsani, 2012). Advancements in remote sensing technology offer opportunities for rapidly 
detecting plants by measuring plant spectral reflectance (spectral signature) and comparing the 
spectral reflectance of healthy and stressed plants (Lopez-Granados, 2011). The spectral 
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reflectance of leaves can be affected by nutrient deficiency, creating differences in color, shape, 
cell wall degradation, or crop canopy morphology (Blackburn, 1998). Hyperspectral sensors are 
one of the most promising spectral-based sensors to monitor these changes, especially for nutrient 
deficiency, which creates chlorotic and necrotic symptoms (Mahlein et al., 2012). Innovative 
hyperspectral cameras in the visible and near-infrared range prove the capabilities of narrow 
bandwidth spectral data to detect early changes in plant physiology due to biotic and abiotic 
stresses(Lu et al., 2017; Mahlein et al., 2010). These remote sensing tools, in combination with 
powerful multivariate analysis tools, such as Neural Networks (NN), Decision Trees (DT), and 
Support Vector Machines (SVM), can be efficiently used to distinguish between more than one 
type of stressor and disease (Moshou et al., 2004; Zhang et al., 2007). G round-based spectral 
observations using a hyperspectral spectroradiometer have been conducted to characterize crop 
nutrient deficiencies, especially to evaluate the impact of nitrogen and environmental conditions 
on corn crops (Atkinson & Tatnall, 1997). In addition, using spectral vegetation indices (SVI) and 
band ratios can magnify differences in spectral signatures caused by stress factors, making 
separating infected plants from healthy plants easier (Mahlein et al., 2012). Monitoring nitrogen, 
iron, magnesium, and phosphorous can help farmers manage their fields by applying the optimum 
application rate, avoiding excessive fertilization, and reducing water use, which is costly and 
causes environmental pollution (Boroujerdnia et al., 2007; Gunkel et al., 2007; Strachan et al., 
2002). Based on biochemical and biophysical plant changes due to nutrient deficiencies, ground-
based spectral observations using hyperspectral spectroradiometers have been conducted to 
characterize these nutrient deficiency symptoms in crops. For instance, Tilling et al. (2007) applied 
best band selection to measure N variability in a wheat field; (Strachan et al., 2002)  used 
hyperspectral information-based spectral to monitor different N application rates within area-
grown corn; Osborne et al. (2002) determined combinations of wavelengths indicative of P and N 
deficiency in corn using spectral radiance measurements; Zhao et al. (2005) used ratios from leaf 
hyperspectral reflectance to evaluate the effects of N deficiency on sorghum growth. In addition, 
optical indices from hyperspectral remote sensing were employed to assess chlorophyll variability 
over crop plots with various nitrogen levels (Haboudane et al., 2004). Spectral measurement has 
been found to discriminate nutrient deficiencies and diseases in plants when the visual distinction 
is difficult (Ampatzidis et al., 2017; A. I. de Castro et al., 2015). Therefore, detecting and 
determining NPK deficiencies would be valuable when managing industrial hemp (Cannabis 
sativa) plants in greenhouses. This project studied the possibility of remotely detecting NPK 
deficiency. The main objective of the present study was to detect NPK nutritional deficiencies 
before obvious visual symptoms arose. Early detection of NPK can help growers develop 
management techniques to efficiently apply a successful NPK fertilization rate to industrial hemp 
in greenhouses. The objectives of this study are i) to select the optimal hyperspectral wavebands 
to detect NPK deficiency in hemp plants, ii) to evaluate and choose the best classification algorithm 
to accurately detect NPK deficiency in an early stage. 

2. Materials and Methods 

2.1. Plant and Samples Selection 
The experiment was conducted in a greenhouse environment at the Plant Growth Facilities of the 
University of Minnesota - Twin Cities Saint Paul campus. The experiment included three hemp 
cultivars and breeding lines: Trilogene Alpha, Atlas Wilhelmina, and UMN 5-4. Trilogen Alpha 
and Atlas Wilhelmina are feminized auto-flowering cultivars bred for CBD production. UMN 5-4 
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is a vigorous breeding line selected from feral hemp collections and maintained by the University 
of Minnesota. Healthy seedlings were transplanted into 3-gallon pots at ~10 DAP, with one plant 
per pot. Pots were filled with Promix BRK growing media and fertilized with Osmocote Plus 15-
9-12 (3-4 months) at a rate of 3g Osmocote per liter of growing media. This low fertilizer rate is 
insufficient for commercial hemp production and intended only to supply enough nutrients for 
plants to reach maturity.  Two treatments were initiated at ~50 DAP. Healthy (H) plants received 
Jack’s 20-10-20 Peat-Lite nutrient at a rate of 150 ppm via bottom water fertigation for the duration 
of the experiment and were used as the control. Nutrient stressed plots received no additional 
nutrients beyond the Osmocote. Plots were comprised of nine plants of a single cultivar/breeding 
line, each subjected to one of the two aforementioned nutrient regimes, for a total of six plots per 
repetition with two complete repetitions (Figure 1a). 

   

2.2 Hyperspectral Data Collection      

Spectral measurements were collected on Jan 3 (~60 DAP) & 7 (~64 DAP) (Fig. 1 a&b). The 
desired goal of the data collection was to detect the disease in a very early stage before showing 
any symptoms.       

All collected samples were scanned using a benchtop hyperspectral imaging system (Fig.1 b), Pika 
L 2.4 (Resonon Inc., Bozeman MT, USA) equipped with a 23 mm lens which has a spectral range 
of 380–1020 nm, 281 spectral channels, 15.3º field of view, and a spectral resolution of 2.1 nm. 
Resonon Hyperspectral Imagers (RHI) are line-scan imagers (also called push-broom imagers). 
The system consists of a linear stage assembly that is moved by a stage motor. Regulated lights 
are placed above the linear stage to create optimal conditions for performing scans. The 
hyperspectral imaging system was set so the distance from the lens to the linear location was 0.5m. 
The lights were at the same level as the lens on a parallel plane. All scans were performed using 
the Spectronon Pro software (Resonon Inc., Bozeman MT, USA), which was connected to the 
camera system using a USB cable. Before performing scans of the leaves, dark current noise was 
removed using the Resonon cub software. Then the camera was calibrated by using a white tile 
(reflectance reference), provided by the manufacturer of the camera system, placed in the same 
conditions as where the scans were to be performed. The regions of interest (ROIs) were chosen 
manually by randomly selecting ten spectral scans from each canopy to avoid bias. The number of 
pixels for each RoI was about 2000, including representative leaf tissue (symptomatic and 
asymptomatic) to collect data from the whole leaf (Fig. 1b). The canopies of hemp plants were 
scanned in a separate room with stable lighting conditions. After each scan, the spectral data of the 
leaves were collected using post-processing data analysis software (Spectronon Pro, Resonon Inc., 
Bozeman MT, USA). Several areas on the leaves were selected using the selection tool, and the 
spectrum was generated. Several random spots on leaves were chosen for healthy and 
asymptomatic stages. Once the spectra were developed, the reflectance data were exported from 
the software in Microsoft Excel Sheets using the export option. White panels and dark lines with 
black covers were utilized for calibration.  
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   (a)       (b) 

Figure 1: a) Industrial hemp plants in the greenhouse; b) Spectral measurement equipment setup 
with hemp plant with a hyperspectral camera and halogen light source shown.  

2.3 Spectral Data Classification Methods 
For the classification analysis, SPSS software and Python software were utilized to analyze and 
classify the spectral data of the four categories of plants: (i) healthy, (ii) asymptomatic, (iii) very 
early, and (iv) early stages. Four classification methods were utilized to analyze the collected data 
and classify the above categories: (I) the Neural Network Multilayer Perceptron (MLP); (II) 
Stepwise Discriminate Analysis (STDA); (III) Random Forest Classifier (RFC); (VI) Quadratic 
Discriminant Analysis (QDA). These methods were chosen because of their high classification 
accuracy in similar studies (Lu et al., 2017; Omrani et al., 2014). 

2.3.1 Neural Network Multilayer Perceptron (MLP) 
MLP is an artificial neural network that performs supervised machine learning. It is a more 
complicated process than a simple linear classifier and can analyze a substantial amount of data. 
MLP is considered an excellent function classifier for spectral reflectance data(Singh & Rao, 
2005). Generally, the back-propagation technique in neural networks is utilized to adjust the 
network weights to improve classification accuracy (Palmer, 1987). This study randomly split the 
entire dataset into two datasets, including 70% training and 30% testing (Barros et al., 2008). The 
input layers used to train the MPL were: healthy, asymptomatic, very early, and early development 
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stages. A cross-validation method was utilized to validate the results. Cross-validation classifies 
all variables. 

2.3.2 Stepwise Discriminate Method (STDA)  
STDA is commonly used in agricultural research to select valuable subjects of variables and to 
estimate the order of importance of each variable in the final prediction of a group membership. 
For example, the STDA method was applied in remote sensing applications to identify the dataset’s 
patterns and determine the probability of a dataset (spectral data) belonging to a given group. This 
method utilizes backward elimination to remove features/factors that do not significantly affect 
the prediction while building a machine-learning model. Several parameters can be used to 
determine if a feature/factor substantially affects the forecast, including the Wilks Lambda, the 
Mahalanobis Distance, and the F value. If the F value of a variable is statistically significant in the 
discrimination group, then it means the variable contributes to the estimation of group 
participation. In this study, the input data contained the spectral reflectance of three hemp varieties 
to monitor the progress of NPK deficiency. The training dataset was 70%, and the testing dataset 
was 30%. 

2.3.3 Quadratic Discriminant Analysis 
 Discriminant analysis plays an essential role in biological and agricultural research. The most 
common discrimination methods in applied applications are parametric systems like the linear and 
quadratic discriminant analysis. However, there exist adjustments to these approaches, namely 
unbiased and predictive discriminant analysis, which lead to compact error rates in certain 
conditions 

2.3.4 Random Forest Classifier 
Random forests are, as a whole, a learning method for classification, regression, and other tasks 
that function by creating a forest of decision trees through the training time. Unlike decision trees, 
Random forest overcomes the weakness of overfitting its training data set and handles together 
numeric and categorical data. In other words, a random forest classifier contains a mixture of tree 
classifiers. Each classifier is produced using a random vector sampled autonomously from the 
input vector. Each tree companies a unit vote for the most common class to classify an input vector 
(Breiman & Friedman, 1988). The random forest classifier used for this study uses randomly 
selected features or a combination of features at each node to grow the tree.  

4. Result and Discussion   

Mean hyperspectral curves (spectral signatures) for asymptomatic and advanced detection stages 
of NPK deficiency, as well as for standard NPK rate (which can be called a healthy (H) plant), are 
shown in Fig. 2 a, b, and c, for Alpha, Atlas, and UMN 5-4 respectively. In the early stage, there 
are no apparent differences to the naked eye in the spectral reflectance of the visible range (VIS; 
400–700 nm) between the two varieties, Atlas and UMN 5-4. Fig. 2 shows two characteristic 
peaks, one in the green region of the spectrum and the highest reflectance in the near-infrared 
spectral region, which is typical for green vegetation. The expected peak in the green region of the 
spectrum is at 550 nm (Fig. 2) for any class. This stage may be due to the unchanging chlorophyll 
concentration, as chlorophyll tends to be more critically affected than other pigments when plants 
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are under stress (Sims & Gamon, 2002). No stress occurred during this early stage, and the leaves 
appeared healthy in the visible range. Alpha was the only variety with higher reflectance in stressed 
plants than in the controlled plants. In the NIR region, all low rates of NPK had higher reflectance 
than standard rates. A standard rate of NPK had lower reflectance in the region (NIR) and a sharp      
shift to the NIR domain. Hence, early detection at asymptomatic stages is crucial and challenging 
because the plant is under stress when the symptoms develop. If it is not remediated in time, this 
will lead to early senescence or reduced crop production. In this state, before the appearance of 
visual symptoms, it is challenging to identify nutritional deficiencies using wavelengths in the 
visible region. Therefore, recourse to Proxy Gene Expression methods or remote sensing in the 
red-edge and NIR regions are good indicators to monitor nutrient deficiencies in the early stages 
(Heim et al., 2018; Nie et al., 2018). Hemp leaves kept the green color for two weeks, and then we 
could see some initial symptoms of NPK deficiency. The most relevant change concerning the 
early stage stress is observed in the NIR region. This will reduce the yield productivity, therefore 
identifying nutrient deficiency in the early stage, leading to improved field management and 
expecting the NPK deficiency in the very early stage before the situation of plants develops into 
complex damage. 

 

 
       (a)          (b) 
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(c) 

Figure 2: The mean spectral reflectance of the industrial hemp plant for three varieties with low 
and standard NPK rates: a) Trilogen, b) Atlas, and c) UMN 5_4. 1st means the first-time spectral 
measurement, and 2nd means the second-time measurement.  

Table 1: The classification results of industrial hemp plants: Atlas, Trilogene, and UMN 5_4 
with four classification methods MLP, STDA, QDA, and RFC.  

Category Date  MLP 
(%) 

STDA 
(%) 

QDA 
(%) 

RFC 
(%) 

1st measurement          
Atlas standard NPK vs. low NPK 1-3-2022 86 86 85 84 
Trilogene Alpha standard NPK vs. low 
NPK 

1-3-2022 94 97 94 93 

UMN 5_4 standard NPK vs. low NPK 1-3-2022 87 80 82 84 

      
2nd measurement       
Atlas high standard NPK vs. low NPK 1-7-2022 92 94 92 93 
Trilogene Alpha standard NPK vs. low 
NPK 

1-7-2022 98 97 96 95 

UMN 5_4 standard NPK vs. low NPK 1-7-2022 92 92 92 91 

 
It was possible to differentiate between the three varieties at both asymptomatic and early stages 
of nutrient deficiency development (Table 1) shows the ideal spectral bands designated for early 
and late-stage detection of NPK deficiency using MLP classification methods. The results obtained 
with MLP were better than those achieved with QDA, RFC, and STDA, with classification 
percentages ranging from 92% to 98% in all datasets in the second trial. In contrast, the highest 
precision value achieved using STDA was 97%. Since the classification results in the second trial 
are not significant, they all have high classification rates ranging from 92-98. Therefore, the band 
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selection was extracted as one set (six bands). Only one collection of feature selections was picked 
to ensure it is possible to build a sensor that can detect nutrient deficiency in greenhouses with 
different varieties. The sensor with six bands will not be limited to a specific variety. Each hemp 
plant has different plant morphology. For instance, Atlas is shorter than other varieties. Therefore, 
it needs an extra nutrient and water system based on the UMN 5-4 recommendations.    

The best bands selected were: “725.57, 732.05, 992.83, 854.39, 792.9, and 712.62 nm”. Most of 
the best bands resided between red-edge and NIR (700-900). As we mentioned, there were no 
significant differences between spectral curves in the visible range; the most differences were in 
the NIR range. Most of the low NPK rates showed higher NIR spectra than the standard NPK rate 
spectra. The curve record supports the result of band selection. The hemp plants did not show any 
symptoms during HS measurements. Therefore, there were no bands selected from the visible 
range. This could help growers make the right decision before nutrient deficiency increases in the 
greenhouse, making it challenging to remediate without loss. The concentration of chlorophyll did 
not change in this case. In general, chlorosis is the yellowing of leaf tissue due to a lack of 
chlorophyll. It may be confusing to the grower to determine the reason for the chlorosis since there 
are numerous possible causes: drainage, damaged roots, compacted roots, high alkalinity, and 
nutrient deficiency. However, it is difficult to differentiate between those of chlorosis quickly and 
accurately based on visual cues alone. Plant pathology and horticultural professionals depend on 
the apparent symptoms of symptoms and morphology patterns, which help determine the nature 
of the plant stress. In many cases, biotic stress symptoms are similar to abiotic stress symptoms. 
For instance, Abdulridha et al. (2019) could differentiate between N & Fe deficiency and Laurel 
Wilt Disease in avocados using the Hyperspectral technique.  

5. Conclusion 

 Hyperspectral images with ideal feature selection can be utilized to differentiate nutrient 
deficiency in plants with substandard nutrient rates and develop an automated and low-cost stress 
detection system. The industrial hemp industry would benefit from an automatic and remote 
method for asymptomatic and early stress detection that would enable agronomists and growers to 
prevent the progression of nutrient deficiency, making timely management decisions easier and 
reducing degradation. Three hemp varieties were studied to ascertain their spectral reflectance of 
the nutrient deficiency by comparing low and standard fertilizer rates. The best classification 
methods were MLP and STDA, with classification rates between 91%-98% for the second round. 
This classification rate is considered a high rate value and can be an excellent indicator to 
differentiate between standard and low NPK rates. The best feature selection was chosen from 
MLP as follows: 725.57, 732.05, 992.83, 854.39, 792.9, and 712.62. All bands fall in the NIR and 
red edge, so it is possible to build a new sensor to detect nutrient deficiency in greenhouses with 
acceptable accuracy.  
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